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FIG. 3. Stacked section after zero-phase post-stack decon- 
volution. 

FIG. 4. Results of applying automatic phase correction al- 
gorithm to data in Figure 3. 

FIG. 5. Log relative impedances shown on left were ob- 
tained by inverting 20 seismograms near trace 80 in Figure 
3. These results do not compare favorably with velocity log 
plotted in center of diagram. Log relative impedance ob- 
tained by inverting 20 of corresponding phase-corrected 
data in Figure 4 shown on right side of this figure. Improved 
match to well is obvious. 

applied to the data sets in both Figures 3 and 4 and the results 
for 20 consecutive traces in the vicinity of well site are shown in 
Figure 5. The relative impedance traces to the right of the well 
log correspond to the phase-corrected data while those to the left 
correspond to the uncorrected data. Obviously, the application of 
the phase correction algorithm to these data resulted in an im- 
proved match between the well-log relative impedance and the 
calculated relative impedance functions. Furthermore, compari- 
son of the faulted zone (traces 50 to 70, between 1.6 to 2.0 s) in 
Figures 3 and 4, shows a better fault definition on the phase- 
corrected output. 

The two methods for determining the residual phase are com- 
plementary and we often apply both methods to data when a well 
log exists. In the majority of cases the phase shifts predicted by 
the two methods are in acceptable agreement. 

References 

Levy, S., and Oldenburg, D., 1982, The deconvolution of phase-shifted 
wavelets: Geophysics, 47, 1285-1294. 

Levy, S., and Fullagar, P. K., 1981, Reconstruction of a sparse spike 
train from a portion of its spectrum and application to high-resolution 
deconvolution: Geophysics, 46, 1235-l 243. 

Oldenburg, D. W., Scheuer, T., and Levy, S., 1983, Recovery of the 
acoustic impedance from reflection seismograms: Geophysics, 48, 
1318-1337. 

Wiggins, R. A., 1978, Minimum entropy deconvolution: Geoexpl., 16, 
21-35. 

Stable Inversion of Zero-Offset Seismic 
Data 

s3.3 

B@rge Arntsen, Petroleum Technology Research Institute; and 

Bj#rn Ursin, Seismic Research and Development AIS. Norway 

In a previous paper it was shown that the zero-offset reflection 
response due to a point source from a stack of homogeneous 
layers of variable thickness can be used to compute the thickness, 
velocity, and density in each layer. However, the proposed 
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scheme was found to be sensitive to noise in the dala. A stable 
scheme is obtained by minimizing the sum of the squared differ- 
ences between the data and the output from a modeling program. 
The model parameters (layer thickness, velocity, and density) are 
iteratively updated until the minimum is reached. 

Numerical results obtained with synthetic data show that the 
method is limited to shallow seismic data. For large values of the 
geometrical spreading, only the acoustic impedance as a function 
of traveltime can be estimated. That is, the wavefront becomes 
almost planar, and the wave propagation is goverened by the one- 
dimensional wave equation. 

Introduction 

This paper presents a method for estimating wave velocities 
and densities as a function of depth in a horizontally layered me- 
dium. In a previous paper it was shown that the zero-offset re- 
flection response due to a point source can be used to compute 
thickness, velocity, and density in each layer by a simple 
scheme. The scheme is, however, sensitive to noise, and we now 
propose to use a least-squares method. The method minimizes 
the sum of squared differences between the data and a synthetic 
response computed from a model. It was found earlier (Cook and 
Schneider, 1983; Bamberger et al., 1982) that such an inversion 
scheme is indeed stable. 

Zero-offset modeling 

The measured response in a seismic experiment may be related 
to the parameters describing the subsurface through a set of equa- 
tions which we call the forward model. We consider vertically 
traveling waves in a horizontally layered elastic medium where 
each layer is characterized by the wave velocity ck, density pk, 
and thickness Djk. 

According to ray theory (Ursin and Amtsen, 1983), the dis- 
placement velocity at the receiver is given by a sum of terms 
corresponding to all primary and multiple reflections. Each term 
contributes an amount, i 

V(0) = II Hj(O), (1) 
,=I 

where 0 is a parameter vector defined as 

and the first H factor is the source pulse shape delayed by the 
traveltime T given by 

N 
7 = 1 skD&. (3) 

!i=l 

Here .Q IS the number of times the ray has traversed layer k. The 
geometrical spreading is expressed by the second H factor as 

HZ = (&G+ (4) 

The rest of the factors in equation (I) contain transmission and 
reflection coefficients. 

To evaluate a realistic response, a large number of rays must 
be included in the calculations. We use an automatic ray-gener- 
ation scheme which includes primary reflections and waves re- 
flected up to a certain number of times. The resulting response 
vector is denoted by f(0) and has components 

f(O) = VI,.& . .,.fJ. (5) 

Component k is the response at time 7k = kAl, Ar being a suitable 
sampling interval. 

Least-squares inversion 

The measured seismic data may now be described by the for- 
ward model 

Y =f(B), (6) 

where Y is the data vector. Assuming that second-order terms in 
a Taylor expansion of f may be neglected, we obtain 

AYk=FkAO. (7) 

Here AYk = Y-F(&), A9 = fJ - &, and F, is the Jacobian 
matrix whose elements are given by 

evaluated at 8 = &. et is the estimate of fJ in iteration k. The 

next estimate of 0 is &+ , = 8, + A& +, which is found by solv- 
ing the least-squares problem, 

min 11 AYt - “!tI 11. (9) 

The solution is 

A&+, = $-’ AYk, 

where 9-l 1s a generalized inverse of the matrix 

8, = &A@, (W 

Table 1. Inverted model usiug synthetic data without noise. 

Exact model Initial model 
luverted model, 

no noise 

0 
1500 
1615 
2050 
1950 
2160 
3050 
3160 
5350 
3600 
4700 

_ 
125 
119 
200 
250 
100 
150 
250 
260 
350 

P 
(g/em’) 

0.00 
1.09 
I .46 
1.86 
1.77 
1.90 
2.20 
2.25 
2.57 
2.35 
2 47 

C 
W) 

0 
1500 
1500 
1500 
1500 
1500 
1500 
1500 
1500 
1500 

D P 
(m) (g/cm’) 

C 
W) 

0.00 0 _ 0.00 
125 1.09 1500 125 1.09 
112 1.20 161 I 119 1.46 
146 1.40 2050 200 1.86 
192 1.20 1950 250 1.77 
69 1.80 2160 100 1.90 
74 2.00 3051 150 2.20 

119 2.10 3165 250 2.25 
73 2.20 5349 260 2.57 

146 2.00 3602 350 2.35 
2.47 4700 2.47 
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computed by a modified Marquardt-Levenberg algorithm (More. 
1977). 

Numerical results 

Synthetic data were computed using the model defined in Ta- 
ble 1. An air gun source and the receiver were positioned just 
below the surface. Least-squares inversion was then applied to 
the synthetic trace with initial parameter values as given in Table 
1. The parameters were chosen such that traveltimes for each 
layer were close to the traveltimes in the model used for genera- 
ting the synthetic trace. 

The results of the inversion using noise-free data, data with 
medium noise level, and data with high-noise level is shown in 
Tables l-2 and Figures 1-3. The error in the estimated parame- 
ters increases with depth. This is partly due to the fact that for 
large values of geometrical spreading the wavefront becomes al- 
most planar, and wave propagation is described by the I-D wave 
equation. As is known, only acoustical impedance may be recov- 
ered in this case. Also the signal-to-noise ratio increases with 
traveltime, especially reducing the information contained in the 
multiple reflections from deep layers. This makes estimation of 
velocities, densities, and layer thicknesses difficult, and limits the 
method to shallow data. Acoustical impedance may, however, be 
estimated even for deep reflectors with relatively large SIN ratio. 

Table 2. Inverted model using synthetic data with low and high 
noise level. 

Inverted model, 
medium noise 

Inverted model 
high noise 

0 _ 0.00 0 _ 0.00 
1500 125 1.09 1500 125 1.09 
1622 120 1.45 1795 133 1.30 
2211 216 1.73 1986 194 2.02 
1936 248 1.77 1870 240 I .92 
2048 95 2.00 2718 127 1.50 
4012 198 1.70 2401 121 3.00 
2270 179 3.22 1941 151 4.05 
4253 206 3.32 1977 96 7.11 
2151 209 4.25 1829 177 5.52 
4700 _ 2.47 4700 _ 2.47 

P 
k&m’) 

P 
b&m’) 

FIG. 1. Response from inverted model using synthetic data 
without noise. 

/ R‘W. 

FIG. 2. Response from inverted model using synthetic data 
with low noise level. 

FIG. 3. Response from inverted model using synthetic data 
with high noise level. 
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Robust Iterative Inversion for the One- s3.4 
Dimensional Acoustic Wave Equation 
Adam Gersztenkorn, Amoco Production Co.; J. Bee Bednar, 

Amerada Hess Carp; and Larry R. Lines. Amoco Production 

co. 

The one-dimensional geophysical inverse problem is solved by 
considering a linearized integral equation which is deduced from 
the wave equation. This Born inversion approach is shown to be 
equivalent to linear least-squares inversion for a particular para- 
meterization of the medium. The least-squares solution is also 
considered as a member of a family of generalized LP norm so- 
lutions which are deduced from a maximum likelihood formula- 
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